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Human neuroimaging studies have revealed a dedicated cortical system for visual scene processing. But what is 

a “scene ”? Here, we use a stimulus-driven approach to identify a stimulus feature that selectively drives cortical 

scene processing. Specifically, using fMRI data from BOLD5000, we examined the images that elicited the greatest 

response in the cortical scene processing system, and found that there is a common “vertical luminance gradient ”

(VLG), with the top half of a scene image brighter than the bottom half; moreover, across the entire set of images, 

VLG systematically increases with the neural response in the scene-selective regions (Study 1). Thus, we hypothe- 

sized that VLG is a stimulus feature that selectively engages cortical scene processing, and directly tested the role 

of VLG in driving cortical scene selectivity using tightly controlled VLG stimuli (Study 2). Consistent with our 

hypothesis, we found that the scene-selective cortical regions —but not an object-selective region or early visual 

cortex —responded significantly more to images of VLG over control stimuli with minimal VLG. Interestingly, 

such selectivity was also found for images with an “inverted ” VLG, resembling the luminance gradient in night 

scenes. Finally, we also tested the behavioral relevance of VLG for visual scene recognition (Study 3); we found 

that participants even categorized tightly controlled stimuli of both upright and inverted VLG to be a place more 

than an object, indicating that VLG is also used for behavioral scene recognition. Taken together, these results 

reveal that VLG is a stimulus feature that selectively engages cortical scene processing, and provide evidence for 

a recent proposal that visual scenes can be characterized by a set of common and unique visual features. 
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. Introduction 

Human neuroimaging studies have revealed a set of three cortical

egions selectively involved in visual scene processing: the parahip-

ocampal place area (PPA; Epstein and Kanwisher, 1998 ), the occipi-

al place area (OPA; Dilks et al., 2013 ), and the retrosplenial complex

RSC; Maguire, 2001 ). However, despite a growing understanding of the

eural mechanisms underlying visual scene processing (for review, see

ilks et al., 2021; Groen et al., 2017; Malcolm et al., 2016 ), a funda-

ental question remains: While these three cortical regions are known

o be scene selective (i.e., responding two to four times more to images

f scenes than to image of objects or faces), what precisely is a “scene ”

versus an object or face), and thereby selectively engages cortical scene

rocessing in the first place? 

Over the past decade, several studies have attempted to identify

he stimulus features that selectively engage cortical scene processing.

pecifically, a collection of studies found that the scene-selective cortical

egions show a preferential response to certain low-level features that
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re commonly found in visual scene stimuli – that is, high spatial fre-

uency, rectilinearity, and cardinal orientations ( Rajimehr et al., 2011 ;

aufmann et al. 2014 ; Nasr et al., 2012 , 2014 ). However, one recent

tudy ( Cheng et al., 2021 ) pointed out that, since these features are also

ommonly found in non-scene stimuli, especially objects, they cannot

eliably enable the human brain to differentiate scene from non-scene

timuli, and proposed that cortical scene selectivity is rather driven by

isual features that are not only common, but also unique to visual

cenes. Indeed, they found that “concavity ” (portraying inside) is one

uch stimulus feature, with the cortical scene processing system even

esponding significantly more to “concave ” objects (e.g., the inside of

 microwave) over “convex ” objects (e.g., the outside of a microwave).

owever, the cortical scene processing system has also been shown to

espond selectively to images of the exterior of buildings that are con-

ex, and landscapes with no apparent cues of concavity ( Epstein and

anwisher, 1998 ). Thus, beyond concavity, there must exist other

isual cues that also drive cortical scene processing, but what are

hey? 
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Fig. 1. Example stimuli from BOLD5000 . 
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One challenge in answering this question is that visual scene stimuli

re highly variable; thus, there is a vast number of stimulus features that

ould be potentially relevant, making it nearly impossible to generate

n a priori hypothesis regarding what the precise stimulus features are

hat drive cortical scene processing. To resolve this challenge, in Study 1,

e used an alternative, stimulus-driven approach to identify a candidate

eature. Specifically, we reasoned that if there exists a stimulus feature

hat selectively drives cortical scene processing, then it should be identi-

able in the visual stimuli that elicited a selective response in the scene-

elective regions. As such, we made use of BOLD5000 ( Chang et al.,

019 ) —an existing fMRI database of participants looking at approxi-

ately five thousand highly variable images —and examined whether

here is a recurring feature in the visual stimuli that elicited a selec-

ive response in the scene-selective cortical regions. To anticipate, we

ound that among the images that elicited the strongest response in the

cene-selective cortical regions, there is a common “vertical luminance

radient ” (VLG) – with the upper half of a scene image significantly

righter than the lower half. Moreover, VLG systematically and selec-

ively increases with the neural response in the scene-selective regions,

ut not in an object-selective region nor in early visual cortex. Thus,

n Study 2, taking a hypothesis-driven approach, we hypothesized that

LG is a stimulus feature that drives cortical scene selectivity, and di-

ectly tested whether the scene-selective regions indeed show a selec-

ive response to tightly-controlled images of VLG. Finally, in Study 3,

e further explored the behavioral relevance of VLG for visual scene

ecognition and hypothesized that VLG is a visual feature that humans

se for behavioral scene recognition. 

. Study 1 

.1. Materials and methods 

Visual stimuli. The entire set of visual stimuli used in the original

OLD5000 experiment ( Chang et al., 2019 ) —including categories and

timuli drawn from three computer vision datasets ( Deng et al., 2009;

in et al., 2014; Xiao et al., 2010 ) —were included. Visual stimuli in-

luded 4916 unique images, with a diverse range of images, including

000 images from 250 scene categories that varied in terms of indoor
2 
ersus outdoor, and manmade versus natural scenes, non-exclusively;

916 images of singular objects; and 2000 images of multiple objects

hat varied in manmade, natural, animate and inanimate objects, non-

xclusively (see Fig. 1 for example stimuli). 

Analysis of image statistics . To analyze the luminance statistics of the

timuli, we converted the original JPG images, which were encoded in

tandard Red Green Blue (sRGB) color space, into CIELAB color space in

hich the intensity of each pixel is expressed in three values: L ∗ (lumi-

ance), a ∗ (green-red opponency), and b ∗ (blue-yellow opponency). We

hose to analyze the image statistics in the CIELAB color space since the

eature dimensions in CIELAB more closely resemble the human per-

eptual experience than sRGB ( Oliva and Schyns, 2000 ), and that the

IELAB format codes for the luminance and color, or chroma, prop-

rties of the stimuli separately, which is particularly relevant for this

tudy. After the above transformation, we split each image into upper

nd lower halves along the middle of the image, averaged the luminance

alue (L ∗ ) of the pixels within each of the upper and lower halves, and

alculated the difference (upper–lower) to quantify VLG. 

fMRI data analysis. We utilized BOLD5000 ( Chang et al., 2019 ), an

pen fMRI dataset, which consisted of the BOLD response of four partic-

pants looking at 4916 unique images in a slow event-related design, for

nalysis. Specifically, the BOLD response during peak activity (both TR 3

nd 4 for participant CSI1–3 and TR 3 only for participant CSI4), which

ere made directly available on the website, were used for analysis.

he BOLD response was measured as the residuals from a general lin-

ar model in which nine nuisance variables (i.e., six motion parameters,

he average signal inside the cerebral spinal fluid mask and inside the

hite matter mask, separately, and global signal within the whole-brain

ask; all extracted from the fMRIprep pipeline; Esteban et al., 2019 )

ere regressed out of the fMRI time series, and were demeaned across

ll image presentations. For images that were shown more than once to

he participants, we only included the neural response to the first pre-

entation of that image for analysis. Regions of Interests (ROIs) included

he three known scene-selective cortical regions: PPA ( Epstein and Kan-

isher, 1998 ), OPA ( Dilks et al., 2013 ) and RSC ( Maguire, 2001 ). We

lso examined the neural response in an object-selective region (lateral

ccipital complex, LOC) and in early visual cortex (EarlyVis) as control

egions. These ROIs were localized by Chang et al. (2019) using data
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rom an independent localizer. The scene-selective regions were defined

sing the contrast of scenes minus objects and scrambled images, and

OC was defined by the contrast of objects minus scrambled images.

arlyVis was defined as the cluster most confined to the calcarine sul-

us using the contrast of scrambled images minus fixation baseline. All

OIs were defined with a threshold of p < 0.0001 (or smaller, family-wise

rror corrected). 

To identify a recurring feature in the stimuli that selectively engaged

he scene-selective regions, we rank ordered the stimuli by the corre-

ponding mean voxel-wise BOLD response in each ROI, sorted the stim-

li into 5 separate bins by the ranks (with 1000 images per bin), and

veraged across the pixel intensity values of the stimuli within each bin

o wash out the unique features of each image. We then examined 1)

hether any visual features remain in the mean image of the stimuli that

licited the greatest response in the scene-selective cortical regions, and

) whether any visual features systematically change across these mean

mages. Finally, to test for the relationship between VLG and the neural

esponse of an ROI at the level of individual images, we also correlated

LG with the BOLD response across the entire image set. 

.2. Results 

.2.1. Validation of cortical scene selectivity in the BOLD5000 dataset 

We first validated whether the scene-selective regions demonstrated

electivity for scene over object stimuli, and whether an object-selective
ig. 2. i , Every thousandth stimuli as ranked by the BOLD response (lowest to highest

i, The mean images of every thousand images, as binned by the ranks of the corresp

o right). iii, The VLG in every thousand images within each ROI. VLG systematical

ot in LOC nor EarlyVis. Error bars represent ± 1 standard error of the mean. 

3 
egion —LOC —demonstrated a selectivity for object over scene stimuli.

o do so, we directly compared the neural response to scene versus sin-

ular object stimuli in these ROIs. A 4 (ROI: PPA, OPA, RSC, LOC) × 2

Category: Scene, Object) mixed-effect repeated-measures ANOVA re-

ealed a significant ROI × Category interaction ( F (3,8742) = 1497.36,

 < 0.001, 𝜂p 
2 = 0.34), with post-hoc comparisons revealing a significantly

reater response to Scene over Object stimuli in all three scene-selective

ortical regions (all p s < 0.001), and a significantly greater response to

bject over Scene stimuli in LOC ( p < 0.001). Together, these results

onfirmed that the scene-selective regions indeed showed a selective

esponse to scene over object stimuli, and LOC showed a selective re-

ponse to object over scene stimuli, consistent with the known selec-

ivity of these ROIs ( Epstein and Kanwisher, 1998 ; Kamps et al., 2016 ;

heng et al., 2021 ). 

.2.2. VLG is common across the visual stimuli that selectively drive 

ortical scene processing 

Having validated that the BOLD5000 dataset captured the known

ortical scene selectivity, we next examined whether there is a stimulus

eature common across visual stimuli that elicited the greatest response

n the scene-selective regions. To do so, we first sorted the stimuli into

 separate bins by the ranks of the corresponding BOLD response within

ach ROI (see Fig. 2 Ai-2Ei for an illustration of every thousandth stimuli,

anked from the lowest to highest BOLD response), and averaged across

he thousand images within each bin to wash away the unique features
, from left to right) of (A) PPA, ( B ) OPA, and ( C ) RSC, ( D ) LOC, and ( E ) EarlyVis. 

onding BOLD response of an image in an ROI (also lowest to highest, from left 

ly increases as the BOLD response in the scene-selective regions increases, but 
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f each image. Next, in an exploratory analysis, we examined whether

ny visual features remain in the mean images of the stimuli that elicited

he greatest response in the scene-selective cortical regions. 

Intriguingly, as seen in the rightmost image in Fig. 2 Aii-2Cii, the

ean images of the stimuli that elicited the greatest response across all

hree scene-selective regions are quite similar. Specifically, they share a

ommon “vertical luminance gradient ” (VLG), with the top half of the

mage brighter than the bottom half. Importantly, VLG is not observ-

ble in the mean images of the stimuli that elicited the lowest response

i.e., the leftmost) across all three scene-selective regions, and VLG be-

omes more salient as the neural response of the scene-selective regions

ncreases across the mean images. To directly test this observation, we

ext quantified the VLG of the stimuli in each of the five bins by splitting

ach stimulus image from BOLD5000 into upper and lower halves along

he middle of the image, calculating the difference of luminance inten-

ity (using the L ∗ value from CIELAB color space) between the pixels in

he two halves, and then examining the mean differences across these

ins. Consistent with our observation, we found an increase of VLG as

he neural response increases across the bins ( Fig. 2 Aiii-2Ciii). Finally,

e directly tested for a correlation between the amount of VLG of an im-

ge and the neural response of the scene-selective cortical regions at the

evel of individual images. Consistently, we found a significant correla-

ion between the amount of VLG in an image with the neural response

n the scene-selective cortical regions (PPA: r = 0.12, p < 0.001; OPA:

 = 0.10, p < 0.001; RSC: r = 0.09, p < 0.001), indicating VLG increases

ith cortical scene selectivity. 

But does VLG increase with the neural response of the scene-selective

ortical regions only and not in other brain regions? To test this possibil-

ty, we examined whether VLG systematically increases with the neural

esponse of LOC and EarlyVis. Unlike in the scene-selective regions, VLG

ecreases as the response in LOC increases, whereas EarlyVis shows no

isible linear trend of VLG. Furthermore, when we directly tested for a

orrelation between VLG and the neural response of these regions, we

ound a significant but negative correlation ( r = − 0.07, p < 0.001) in LOC,

nd no significant correlation between VLG and the EarlyVis response

 r = 0.03, p = 0.07). Thus, VLG indeed selectively increases with the

eural response in scene-selective cortical regions. 
ig. 3. A , Example stimuli of night scenes from BOLD5000. B, The BOLD response of

n BOLD5000, respectively. Error bars represent ± 1 standard error of the mean. 

4 
.2.3. But what about night scenes in which the luminance gradient is 

eversed? 

Across most environments in our everyday lives, light tends to come

rom above, whether it is from the sun in outdoor scenes, or overhead

rtificial lighting in indoor environments. As such, across most scenes,

he upper half of a scene —which often contains these “above ” sources

f illumination —is brighter than the lower half of a scene. Importantly,

ince non-scene objects and faces have a smaller surface area, they tend

o capture far less —if any —luminance changes; thus, VLG is a stimulus

eature commonly and uniquely found in visual scenes, and its presence

n visual stimuli can be a reliable indicator of a scene. 

This idea, however, also leads to a curious question: How then do

umans recognize outdoor, night scenes in which the lower half of a

cene (i.e., the ground surface) is often brighter than the upper half

i.e., the pitch-black sky), thus resulting in a reverse, dark-to-light lumi-

ance gradient? One possibility is that cortical scene selectivity may be

riven by not only a light-to-dark luminance gradient, but also a lumi-

ance gradient in the reverse direction (i.e., dark-to-light). To explore

his possibility, we identified the limited, but nevertheless existing night

cene stimuli (16 in total; see Fig. 3 A for examples) in BOLD5000 and ex-

mined the corresponding neural response in the scene-selective regions

 Fig. 3 B). We found that the scene-selective regions showed a compara-

le response between the night scenes and “day ” scenes, and both more

han the response to object stimuli. Furthermore, when we tested for a

orrelation between the absolute value of VLG of the BOLD5000 stim-

li and the corresponding neural response in the scene-selective regions

o account for both light-to-dark and dark-to-light VLG, we found com-

arable correlations (PPA: r = 0.10, p < 0.001; OPA: r = 0.09, p < 0.001;

SC: r = 0.13, p < 0.001). As such, it is likely that cortical scene selec-

ivity is driven by VLG in both directions. Note, however, since there

ere relatively few night scene stimuli presented in BOLD5000, the ef-

ect of a dark-to-light gradient was washed away when we averaged

he stimuli by the rank of the neural responses in our analysis. Thus,

n Study 2, in addition to directly testing the role of VLG in driv-

ng cortical scene selectivity (discussed next), we also probed the ef-

ect of light-to-dark versus dark-to-light VLG in driving cortical scene

electivity. 
 PPA, OPA, RSC and LOC to stimuli of singular objects, scenes and night scenes 
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. Study 2 

In Study 1, we found that VLG may be a stimulus feature that

rives cortical scene selectivity. One alternative hypothesis, however,

s that —given the visual stimuli tested in BOLD5000 are naturalistic,

omplex stimuli that are highly variable in not only VLG, but also many

ther visual features —the response in scene-selective cortical regions

ight not be driven by VLG per se, but by other confounding visual

eatures that covary with VLG. Thus, to directly test for the effect of

LG in driving cortical scene selectivity, we created tightly controlled

timuli of VLG that are impoverished of other visual features, together

ith a set of Control stimuli with minimal VLG (which mimic the mean

mages of the stimuli that elicited the lowest response in the scene-

elective cortical regions in Study 1, for comparison). We predicted that

) if VLG (i.e., both light-to-dark and dark-to-light, as found in Study

) indeed selectively drives cortical scene selectivity, then the scene-

elective cortical regions will show a greater response to images with a

trong VLG over the Control stimuli with minimal VLG, and 2) if corti-

al scene selectivity is driven only by luminance gradient along the ver-

ical dimension, then Upright and Inverted VLG —but not Rotated VLG

in which the luminance gradient varies along the horizontal dimen-

ion) —will selectively drive the neural response in the scene-selective

egions. 

.1. Materials and methods 

Participants. Twenty participants (Age:21–40; 12 females) were re-

ruited from the Emory University community, and no participants were

xcluded. All participants gave informed consent and had normal or

orrected-to-normal vision. 

Visual stimuli. To directly test for the effect of VLG in driving cortical

cene selectivity, we created twelve artificial images of VLG that con-

ain a strong difference in the luminance value between the upper versus

ower halves of an image, and are highly impoverished with respect to

on-VLG stimulus features ( Fig. 5 A). To create these VLG stimuli, we

ade use of highly variable scene images that were made available by

onkle et al. (2010) , and then averaged across these images to wash

way the unique visual features of each scene image. Sixty-eight unique

cene images were used to create each VLG image. The VLG images were

onverted into grayscale to further control for non-VLG features, and we

nhanced the contrast of these images to amplify the VLG. A paired t -

est revealed a significant difference in the luminance value between

he upper versus lower halves of the stimuli ( t (11) = 12.48, p < 0.001). In

ddition to the VLG stimuli, we also created a set of Control stimuli

ith minimal VLG, which mimic the mean images of the stimuli that

licited the weakest response in the scene-selective cortical regions in

tudy 1, as a control comparison. To do so, we used the same aver-

ging procedure to average across highly variable object images made

vailable by Hebart et al. (2019) . A minimum of thirty-five unique ob-

ect images were used to create each Control image. A paired t -test re-

ealed a significant difference in the luminance value between the up-

er versus lower halves of the Control stimuli ( t (11) = 5.47, p < 0.001).

rucially, however, a 2 (Condition: VLG, Control) × 2 (Half: Upper,

ower) mixed-effect repeated measures ANOVA revealed a significant

ondition × Half interaction ( F (1,22) = 30.36, p < 0.001, 𝜂p 
2 = 0.58), indi-

ating a greater difference in the luminance value between the upper

ersus lower halves of the VLG stimuli than the Control stimuli. Fur-

hermore, we also tightly controlled for 1) the amount of high spatial

requency (HSF) information ( Rejimehr et al., 2011 ; Berman et al., 2017 ;

ainbridge and Oliva 2015 ); a two-sample t -test confirmed no signifi-

ant difference in the HSF information between the VLG versus the Con-

rol stimuli ( t (22) = − 0.99, p = 0.33), and 2) the amount of rectilinearity

 Nasr et al., 2014 ; Bryan et al., 2016 ); a two-sample t -test confirmed no

ignificant difference between the amount of rectilinearity between the

LG and the Control stimuli ( t (22) = 1.19, p = 0.25). After creating the

pright stimuli in both conditions, we then turned the images upside
5 
own for the Inverted condition, which tested the effect of a reverse

LG in driving cortical scene selectivity. In addition, we also created

he rotated (90° clockwise) version of the same set of stimuli to test

hether cortical scene selectivity for luminance gradient is specific to

he vertical dimension, or general across all orientations. 

Experimental design. We used a region of interest (ROI) approach in

hich we localized the cortical regions of interest with the Localizer

uns, and then used an independent set of Experimental runs to inves-

igate the responses of these regions when viewing blocks of images

rom the stimulus categories of interest. Our ROIs included PPA, OPA

nd RSC. We also examined the neural response of an object-selective

egion (lateral occipital cortex, LO) and primary visual cortex (V1) as

ontrol regions. 

For the Localizer runs, we used a blocked design in which partic-

pants viewed images of faces, objects, scenes, and scrambled objects.

ach Localizer run was 336 s long. There were four blocks per stimu-

us category within each run, and 20 images from the same category

ithin each block. Each image was presented for 300 ms, followed by a

00 ms ISI for a total of 16 s per block. Image order within each block

as randomized. The order of the blocks in each run was palindromic,

nd the order of the blocks in the first half of the palindromic sequence

as pseudo-randomized across runs. Five 16 s fixation blocks were in-

luded: one at the beginning, three in the middle interleaved between

ach set of stimulus blocks, and one at the end of each run. Participants

erformed a one-back repetition detection task, responding every time

he same image was presented twice in a row. 

For the Experimental runs, we used a block design in which par-

icipants viewed blocks of images from each condition of interest (see

he Visual Stimuli section). Seventeen participants completed nine Ex-

erimental runs; two participants completed six Experimental runs; one

articipant completed eight Experimental runs. Each run was 368 s long.

here were three blocks per condition of interest within each run, and

2 images from the same condition within each block. Each image was

resented for 300 ms, followed by a 700 ms ISI for a total of 12 s per

lock. Image order within each block, and the order of blocks in each

un were randomized. Each block was preceded by an 8 s fixation block.

articipants performed a one-back repetition detection task, responding

very time the same image was presented twice in a row. 

MRI scan parameters. Scanning was done on a 3T Siemens Trio scan-

er at the Facility for Education and Research in Neuroscience (FERN)

t Emory University (Atlanta, GA). Functional images were acquired

sing a 32-channel head matrix coil and a gradient echo single-shot

cho planar imaging sequence. Thirty-two slices were acquired for all

uns: repetition time = 2 s; echo time = 30 ms; flip angle = 90°; voxel

ize = 3.0 × 3.0 × 3.0 mm; and slices were oriented approximately be-

ween perpendicular and parallel to the calcarine sulcus, covering the

ccipital as well as the posterior portion of temporal lobes. Whole-brain,

igh-resolution T1-weighted anatomical images were also acquired with

 × 1 × 1 mm voxels. 

Data analysis. fMRI data were processed in FSL software ( Smith et al.,

004 ) and the FreeSurfer Functional Analysis Stream (FS-FAST). Data

ere analyzed in each participant’s native space. Pre-processing in-

luded skull-stripping ( Smith, 2002 ), linear-trend removal, and three-

imensional motion correction using FSL’s MCFLIRT tool. Data were

hen fit using a double gamma function, and spatially smoothed with a

-mm kernel. 

After preprocessing, the ROIs were bilaterally defined in each par-

icipant using data from the Localizer runs. PPA, OPA and RSC were

efined as those regions that responded more strongly to scenes than

bjects ( p < 10 − 4 , uncorrected; Fig. 4 ), whereas LO was defined as those

egions that responded more strongly to objects than scrambled objects,

ollowing the conventional method of Epstein and Kanwisher (1998) and

rill-Spector et al. (1998) . To define V1, we used a probabilistic atlas

ade available by Wang et al. (2015) and registered the ROIs from stan-

ard MNI space to each subject’s native space using the FSL linear reg-

stration tool. 
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Fig. 4. Regions of interest (PPA, OPA, RSC, LO, V1) from an example partici- 

pant. 
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PPA, OPA, RSC, LO and V1 were defined in at least one hemisphere

f all subjects. For each ROI of each participant, the average response

cross voxels for each condition was extracted and converted to percent

ignal change (PSC) relative to fixation, and repeated-measures ANOVAs

ere performed. Finally, a 3 (ROI: PPA, OPA, RSC) × 2 (Hemisphere:

eft, Right) × 2 (Condition: VLG, Control) × 2 (Orientation: Upright, In-

erted) repeated-measures ANOVA revealed no significant ROI × Hemi-

phere × Condition × Orientation interaction ( F (2,36) = 0.85, p = 0.44,

p 
2 = 0.05); thus, data from the left and right hemispheres of the same

OI were collapsed. 

.2. Results 

We predicted that 1) if VLG (i.e., both light-to-dark and dark-to-light,

s found in Study 1) indeed selectively drives cortical scene selectivity,

hen the scene-selective cortical regions will show a greater response to

mages with a strong VLG over the Control stimuli with minimal VLG,
6 
nd 2) if cortical scene selectivity is driven only by luminance gradient

long the vertical dimension, then Upright and Inverted VLG —but not

otated VLG (in which the luminance gradient varies along the horizon-

al dimension) —will selectively drive the neural response in the scene-

elective regions. 

To test Prediction 1, we first examined whether the scene-selective

ortical regions show a greater response to the VLG over the Control

timuli ( Fig. 5 B). Indeed, a 3 (ROI: PPA, OPA, RSC) × 2 (Condition:

LG, Control) × 2 (Orientation: Upright, Inverted) repeated-measures

NOVA revealed a significant main effect of Condition ( F (1,19) = 65.82,

 < 0.001, 𝜂p 
2 = 0.78), with an overall greater response for the VLG over

he Control conditions, consistent with our hypothesis. Moreover, post-

oc comparisons revealed a significantly greater response to the VLG

ver the Control conditions across all three scene-selective cortical re-

ions (all p s < 0.001), confirming a common selectivity for VLG. Next, we

xamined whether the scene-selective regions show a similar response

o Upright and Inverted VLG. We found no significant ROI × Condi-

ion × Orientation interaction ( F (2,38) = 2.74, p = 0.08, 𝜂p 
2 = 0.13), with

ost-hoc comparisons revealing no significant difference between Up-

ight and Inverted VLG in all three regions (all p s > 0.07). Together,

hese results suggest that all three scene-selective regions showed a sig-

ificantly greater response to the Upright and Inverted VLG conditions,

ompared to the Control conditions, consistent with our prediction that

oth light-to-dark and dark-to-light VLG drives cortical scene process-

ng. 

One might notice that RSC response for the VLG stimuli was be-

ow baseline (relative to fixation), why might this be the case? Pre-

ious studies have suggested RSC is involved in more navigation-

nd memory-related processing of visual scenes ( Aguirre et al.,

998 ; Maguire, 2001 ; Marchette et al., 2014 ; Park and Chun, 2009 ;

ersichetti and Dilks, 2019 ; Baldassano et al., 2016 ; Silson et al., 2019 ),

nd thus responds only to more naturalistic and real-world relevant

cene stimuli ( Choo and Walther, 2016 ; Cheng et al., 2021 ). Since the

timuli in Study 2 are tightly controlled and highly impoverished, they

ight not be the optimal stimuli to drive RSC response, thus resulting

n a relatively low level of response. Note, however, despite an overall

ow level of response, we nevertheless observed RSC showing a similar

esponse pattern for VLG over Control stimuli, just like PPA and OPA,

resenting evidence that is consistent with our hypothesis. 

But is the selective response to VLG specific to the scene-selective

ortical regions, or a more general preference across high-level vi-

ual cortex, perhaps as a result of the VLG conditions being some-

ow more interesting and thus engaging more attention? If so, then

e would expect other regions in high-level visual cortex (e.g., LO) to

lso demonstrate the same response pattern. A 4 (ROI: PPA, OPA, RSC,

O) × 2 (Condition: VLG, Control) × 2 (Orientation: Upright, Inverted)

epeated-measures ANOVA revealed a significant ROI × Condition in-

eraction ( F (3,57) = 60.03, p < 0.001, 𝜂p 
2 = 0.76), with LO showing a selec-

ively greater response to the Control over the VLG conditions (post-hoc

omparison, p < 0.001), unlike the scene-selective regions. Thus, the se-

ective response to VLG is not general across high-level visual cortex. 

Could the selective response to VLG simply be driven by low-level

isual information directly inherited from early visual cortex? If so,

hen we would expect V1 to demonstrate the same response pattern

s those in the scene-selective regions. A 4 (ROI: PPA, OPA, RSC,

1) × 2 (Condition: VLG, Control) × 2 (Orientation: Upright, Inverted)

epeated-measures ANOVA revealed a significant ROI × Condition in-

eraction ( F (3,57) = 37.27, p < 0.001, 𝜂p 
2 = 0.66), with V1 showing a selec-

ively greater response to Control over VLG conditions (post-hoc com-

arison, p = 0.002), unlike the scene-selective regions. Thus, the selec-

ive response to VLG is unlikely to be simply driven by the low-level

isual information directly inherited from early visual cortex. 

Finally, to test Prediction 2 – that is, whether cortical scene selec-

ivity is specific to a luminance gradient along the vertical dimension

nly – we examined whether the scene-selective regions show a selec-

ive response to Upright and Inverted, but not Rotated, VLG ( Fig. 6 ).



A. Cheng, Z. Chen and D.D. Dilks NeuroImage 269 (2023) 119935 

Fig. 5. A , Example stimuli in Study 2. B. Neural response 

of the ROIs. The scene-selective regions show a significantly 

greater response to the VLG over the Control stimuli, whereas 

LO and V1 do not. Error bars represent ± 1 standard error of 

the mean. 
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urprisingly, a 3 (ROI: PPA, OPA, RSC) × 3 (Orientation: Upright, In-

erted, Rotated VLG) repeated-measures ANOVA revealed a significant

OI × Orientation interaction ( F (4,76) = 7.02, p < 0.001, 𝜂p 
2 = 0.27), with

ost-hoc comparisons revealing a similar response across all Orienta-

ions in PPA (all p s > 0.07), and a significantly higher response for Ro-

ated over Upright and Inverted VLG in OPA and RSC (OPA: both p s

 0.01; RSC: both p s < 0.03) – presenting evidence that seemingly con-

radicts our hypothesis. But does the Rotated VLG stimuli specifically

rive cortical scene selectivity, or might it drive the neural response

n high-level visual cortex more generally (e.g., LO)? A 4 (ROI: PPA,

PA, RSC, LO) × 3 (Orientation: Upright, Inverted, Rotated) repeated-

easures ANOVA revealed a significant ROI × Orientation interaction

 F (6 , 114) = 19.97, p < 0.001, 𝜂p 
2 = 0.51), with post-hoc comparisons reveal-

ng a significantly greater response for Rotated over Upright and In-

erted VLG in LO (both p s < 0.001), relative to PPA, OPA and RSC. To-

ether, these results reveal that the Rotated VLG stimuli do not specifi-

ally drive cortical scene selectivity, and —in fact —may even specifically

rive cortical object selectivity. 

Nevertheless, given the high response to the Rotated VLG stimuli in

he scene-selective regions, might it still be a diagnostic feature of scene

timuli? To further probe this possibility, we returned to our BOLD5000

ata. Specifically, we measured the horizontal luminance gradient in

he BOLD5000 stimuli by the absolute value of the luminance differ-

nce between the left and right halves of an image, and tested whether

orizontal luminance gradient correlated with the neural response of

he scene-selective cortical regions. We found no significant, positive

orrelation between horizontal luminance gradient and human cortical

cene selectivity (PPA: r = − 0.04, p = 0.01; OPA: r = − 0.02, p = 0.25; RSC:

 = − 0.03, p = 0.02), indicating that horizontal luminance gradient does

ot drive cortical scene selectivity. By contrast, we did find a positive,

ignificant correlation between horizontal luminance gradient and the

eural response in LO ( r = 0.06, p < 0.001), consistent with the just dis-

ussed finding, further raising the intriguing possibility that horizontal

uminance gradient may enable the visual system to differentiate object

rom scene stimuli. 

Why might we observe a high —despite not selective —response to

he Rotated VLG in the scene-selective regions? One plausible explana-
7 
ion is that the Rotated VLG stimuli may have resembled “walls ”, which

as been shown to drive the neural response in the scene-selective re-

ions to some extent ( Epstein and Kanwisher, 1998 ; Kamps et al., 2016 ).

his possibility is consistent with a previous study in which scene-

elective cortical regions showed a stronger response to visual stimuli

f fragmented wall surfaces relative to everyday objects, and that the

timuli of fragmented wall surfaces elicited a stronger response in LOC

elative to visual stimuli of empty indoor rooms ( Kamps et al., 2016 ).

ote, however, since the Rotated VLG stimuli did not selectively drive

eural response in scene-selective regions, nor did we find horizontal

uminance gradient driving neural response in the scene-selective re-

ions among the complex, naturalistic stimuli in BOLD5000, horizontal

uminance gradient is unlikely a feature that humans use to recognize

cene from non-scene stimuli. Nevertheless, in Study 3, in addition to

esting the behavioral relevance of VLG for visual scene recognition, we

lso directly tested horizontal luminance gradient to further ensure that

umans indeed do not use horizontal luminance gradient for visual scene

ecognition. 

. Study 3 

In Studies 1 and 2, we found that VLG selectively drives cortical scene

rocessing, in both naturalistic, complex stimuli and artificial, tightly-

ontrolled stimuli. In Study 3, we then asked whether VLG is actually

sed by humans for behavioral scene recognition. We hypothesized that

f VLG is a visual feature that is behaviorally relevant for humans to

ecognize scene from non-scene stimuli, then participants will categorize

ven highly impoverished stimuli of VLG as a “place ”. 

.1. Materials and methods 

Participants. A total of 100 participants were recruited from Amazon

echanical Turk to participate. Ten participants (seven from the VLG

ondition; three from the Control condition) were excluded from analy-

is due to either providing incomplete responses or failing the attention

heck questions (discussed below). All participants gave informed con-

ent and had normal or corrected-to-normal vision. 
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Fig. 6. Neural response of the ROIs to the VLG stimuli across different orienta- 

tions. LO shows a greater response to Rotated over Upright and Inverted VLG, 

indicating the response to the Rotated VLG Condition is not specific to the scene- 

selective regions. Error bars represent ± 1 standard error of the mean. 
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Fig. 7. A, Experimental procedure for Study 3. After an image was presented 

for 150 ms, participants were asked to indicate whether the image they just saw 

was a “place ” or an “object ”. B. Participants’ proportion of place ratings for the 

stimuli. Participants rated Upright and Inverted VLG as a “place ” more often 

than as an “object ”, but not Rotated VLG. As a control comparison, participants 

showed qualitatively different response patterns for the Control conditions. Er- 

ror bars represent ± 1 standard error of the mean. An asterisk ( ∗ ) indicates that 

the proportion of place ratings is significantly different from chance, and a tilde 

( ∼) indicates that the difference is marginally significant at p = 0.06. 
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Visual stimuli. The same set of VLG and Control stimuli in all three

rientations (Upright, Inverted, Rotated) from Study 2 were used. 

Experimental design. To test whether VLG is behaviorally relevant for

isual scene recognition, we asked an independent group of participants

o determine whether the stimuli used in Study 2 is a “place ” or an “ob-

ect ” without defining either of these words. We used a between-subject

esign and assigned a participant to only either the VLG or Control con-

ition to avoid participants from noticing the categorical difference be-

ween the VLG and Control stimuli and basing their judgment on that.

ach participant first completed 6 practice trials to familiarize them-

elves with the task, and then another 12 experimental trials, which

onsisted of 12 unique images from either the VLG or Control condition,

ith 4 images per Orientation (Upright, Inverted, Rotated). Within each

rial, an image was briefly presented for 150 ms, and participants were

sked to indicate whether the image they just saw was a “place ” or an

object ” ( Fig. 7 A). Image order and the assignment of orientation for the

mages were randomized. After participants completed the experimental

rials, they also completed 4 additional trials in which they performed

he same task on 4 naturalistic images of real-world scenes and objects

2 per condition) to check whether they were paying attention during

he experiment. 

Data Analysis. We calculated the proportion of place ratings for each

ondition, and then used one sample t-tests to test the proportion against

hance (i.e., 50%) for each condition. We also compared the place rat-

ngs across the conditions using repeated-measures ANOVAs. 
8 
.2. Results 

We hypothesized that if VLG is a visual feature that is behaviorally

elevant for humans to recognize scene from non-scene stimuli, then

articipants will categorize even highly impoverished stimuli of VLG as

 “place ”. To test our hypothesis, we examined whether participants’

lace ratings for both the Upright and Inverted VLG stimuli are sig-

ificantly above chance (i.e., 50%; Fig. 7 B). Consistent with our hy-

othesis, one-sample t-tests revealed that participants showed signifi-

antly above-chance place ratings for both the Upright and Inverted VLG

timuli (Upright: t (42) = 4.74, p < 0.001; Inverted: t (42) = 4.45, p < 0.001). By

ontrast, participants’ place ratings for the Rotated VLG stimuli were

ignificantly below chance ( t (42) = − 3.77, p < 0.001), indicating that par-

icipants categorized the Rotated VLG stimuli as an “object ” more often

han as a “place ”, providing converging behavioral evidence that the

pright and Inverted VLG, but not Rotated VLG, is a stimulus feature

hat humans use to distinguish scene from non-scene stimuli. Finally,

o directly test whether participants showed a qualitatively different

esponse to Rotated versus Upright and Inverted VLG, we conducted

 three-level (Orientation: Upright, Inverted, Rotated VLG) repeated-

easures ANOVA. We found a significant main effect of Orientation
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 F (2,84) = 30.94, p < 0.001, 𝜂p 
2 = 0.42), with post-hoc comparisons reveal-

ng significantly greater place ratings for Upright and Inverted over Ro-

ated VLG (both p s < 0.001), and no significant difference between Up-

ight and Inverted VLG ( p = 0.70). Together, these results are consistent

ith the results from Studies 1 and 2 demonstrating the specific role of

LG for visual scene recognition, and the potential role of horizontal

uminance gradient for object recognition. 

Finally, as a control comparison, we also ran the same experiment on

he Control stimuli in a separate group of participants. We found partic-

pants showed below-or-at-chance place ratings for the Control condi-

ions (Upright: t (46) = − 2.92, p = 0.005; Inverted: t (46) = − 1.95, p = 0.06;

otated: t (46) = − 3.10, p = 0.003). Furthermore, a 2 (Condition: VLG,

ontrol) × 3 (Orientation: Upright, Inverted, Rotated) mixed-effects

epeated-measures ANOVA revealed a significant Condition × Orienta-

ion interaction ( F (2 , 176) = 13.51, p < 0.001, 𝜂p 
2 = 0.13), indicating a qual-

tatively different response pattern for the VLG versus Control stimuli.

hus, the greater place ratings for Upright and Inverted over Rotated

LG is unlikely to be driven by any particular details in the experimen-

al design or a general effect of inverting or rotating the stimuli. 

. Discussion 

The current study aimed to identify a stimulus feature that charac-

erizes visual inputs as a scene, and thereby drives cortical scene pro-

essing. In Study 1, using a stimulus-driven approach, we observed a

ommon VLG in the visual stimuli that elicited the greatest response

n the scene-selective regions, including PPA, OPA and RSC. Consis-

ently, we also found a positive and significant correlation between VLG

n these complex, naturalistic stimuli and the neural response in the

cene-selective regions, but not in LOC or EarlyVis. In Study 2, using a

ypothesis-driven approach, we then directly tested whether VLG selec-

ively drives cortical scene selectivity. Consistent with our hypothesis,

ven when we tightly controlled for visual features orthogonal to VLG,

he scene-selective regions still showed a significantly greater response

o the VLG images over the Control images with minimal VLG. In Study

, we next further explored the behavioral relevance of VLG for visual

cene recognition and found that participants also rated images of VLG

s a “place ” more often than as an “object ”. Taken together, these results

eveal that VLG is a stimulus feature that drives cortical scene selectivity

n adult human visual cortex, and that VLG is behaviorally relevant for

isual scene recognition. 

Our findings that the scene-selective regions respond selectively to

LG lend further support to the previous finding that cortical scene se-

ectivity is driven by stimulus features that are common and unique to

isual scenes ( Cheng et al., 2021 ), and extend prior work by revealing

LG as another such feature that can account for cortical scene selec-

ivity to a relatively large set of “non-Concave ” scenes, such as land-

cape scenes ( Epstein and Kanwisher 1998 ), convex buildings depicted

n an outdoor environment ( Cheng et al., 2021 ), and even night scenes.

LG may also explain cortical scene selectivity for objects that are large

n real-world size (e.g., cars, furniture; Mullally and Maguire, 2011 ;

roiani et al., 2014 ; Kamps et al., 2016 ; Julian et al., 2017 ), as large

bjects also have a relatively large surface area to capture changes in

uminance along the vertical dimension, albeit smaller than that of a

cene. 

To what extent does VLG drive cortical scene selectivity? In Study 2,

ince we did not directly compare cortical scene selectivity to VLG versus

aturalistic scene stimuli (e.g., a real-world photograph of a forest), the

recise magnitude of cortical scene selectivity driven by VLG remains

nclear. However, given previous findings for cortical scene selectiv-

ty to stimuli that are not concave and do not have a prominent VLG,

uch as images of a building cut out from its background ( Epstein and

anwisher, 1998 ), it is evident that there exist other features that can

rive cortical scene selectivity beyond VLG and concavity. Thus, one

ruitful future direction is to identify these other features, and to pit

hem (together with concavity and VLG) against natural scene stimuli
9 
o elucidate their relative importance for human visual scene recogni-

ion. Furthermore, as cortical scene selectivity is likely driven by multi-

le common and unique scene features (i.e., concavity, VLG and others),

nother fruitful research direction is to investigate whether selectivity

o these features is common or distinct across subpopulations of neurons

ithin the scene-selective regions. 

But how might neural sensitivity to VLG emerge in the scene-

elective regions? There are two, and not necessarily mutually exclu-

ive, plausible explanations. The first plausible explanation is that such

ensitivity might be scaffolded by retinotopic biases to visual contrasts

long the vertical dimension, given previous findings for retinotopic bi-

ses to the upper and lower visual field in PPA and OPA, respectively

 Silson et al., 2015 , 2016 ). The second plausible explanation is that

uch sensitivity is likely supported by earlier stages of visual processing.

pecifically, a previous study reported that V4 neurons in non-human

rimates exhibited sensitivity to directions of lights and shading on ob-

ects, with a particular bias towards shading gradients that vary along

ertical directions ( Hanazawa and Komatsu, 2001 ). Coupled with find-

ngs for a distinct channel that is particularly tuned for scene-like stimuli

long the ventral visual pathway of non-human primates ( Vaziri et al.,

014 ), neurons in earlier stages of visual processing might be tuned

o VLG (or at least aspects of VLG), thereby gatekeeping scene versus

on-scene information into cortical scene processing. However, future

esearch is needed to explore these plausible explanations. 

In light of a growing body of literature that highlights distinct roles

f the scene-selective regions for visual scene processing, we would like

o make clear that our findings point to VLG as a stimulus feature that

ifferentiates scene from non-scene stimuli, and does not imply that

LG also sufficiently enables a fine-grained, in-depth understanding of a

cene, which is necessary for visual scene discrimination (e.g., differen-

iating images of a forest versus a beach) and navigation. While differ-

ntiating scene from non-scene stimuli involves stimulus features that

re common and unique to visual scenes (like VLG found in this paper),

chieving a fine-grained, in-depth understanding of a scene (enabling

cene discrimination and navigation) involves stimulus features that

re different among visual scenes. Consistently, the existing literature

as highlighted a rich representation of highly variable scene features

n scene-selective cortical regions, encompassing low-level to high-level

eatures —such as contour junctions ( Choo and Walther, 2016 ), textures

 Cant and Goodale, 2011 ), and the geometric properties of the local en-

ironment ( Dillon et al., 2018; Epstein and Kanwisher, 1998; Kravitz

t al., 2011; Lescroart and Gallant, 2019; Park et al., 2011; for a com-

rehensive review, see Malcolm et al., 2016; Groen et al., 2017; Dilks

t al., 2021 ) —that could be used to achieve different behavioral goals in

cene understanding. Thus, we would like to make clear that our find-

ngs point to VLG as a stimulus feature that characterizes visual scenes

s a domain of inputs (distinct from faces and objects), and not that

LG is a stimulus feature that differentiates different kinds of scenes

r enables the precise behaviors necessary for scene discrimination and

avigation. 

Next, we would like to point out two caveats regarding our findings

n Studies 2 and 3. The first caveat is that the Rotated VLG stimuli tested

re made by rotating the upright VLG stimuli clockwise; as such, across

ll Rotated VLG stimuli, the right half of a stimulus is brighter than the

eft half, and we did not test for cortical scene selectivity for horizontal

uminance gradient in which the left half of a stimulus is brighter than

he right half. However, since we did not find an effect for horizontal

uminance gradient when we accounted for both left-to-right and right-

o-left luminance gradients in the BOLD5000 analysis, it is unlikely that

eft-to-right horizontal luminance gradient drives cortical scene selec-

ivity. Another caveat is that the scene versus object ratings in Study 3

s obtained under an alternative forced choice task. As such, one possi-

le explanation for the above-chance object ratings for Rotated VLG is

hat the participants might not truly think that the Rotated VLG stimuli

re indeed more like objects, but rather are less like scenes relative to

he Upright and Inverted VLG stimuli. To discern whether participants



A. Cheng, Z. Chen and D.D. Dilks NeuroImage 269 (2023) 119935 

t  

l  

r  

u  

s  

o  

s  

f

 

t  

g  

c  

i  

u  

a  

t  

v  

t  

e  

t  

d  

o  

a  

j  

s  

g

 

t  

t  

a  

s  

u  

o

D

C

 

a  

–  

t  

P  

t  

P

D

 

i

A

 

N  

E  

J  

W  

a

R

A  

B  

B  

B  

 

B  

 

C  

 

C  

C  

C  

D  

 

D  

 

D  

D  

 

E  

E  

 

G  

 

G  

 

H  

 

H  

 

J  

K  

K  

K  

 

K  

L  

L  

 

M  

M  

M  

 

M  

N  

N  

O  

P  

 

P  

 

P  

 

R  

 

ruly consider the Rotated VLG stimuli to be more like objects, or merely

ess like scenes relative to Upright and Inverted VLG stimuli, one future

esearch direction is to obtain scene and object ratings for these stim-

li independently. Regardless, our results nevertheless show that visual

timuli of Upright and Inverted VLG are categorized as a scene more

ften than non-VLG stimuli, including the Rotated VLG and the Control

timuli, providing evidence for our hypothesis that VLG is a stimulus

eature that humans use for visual scene recognition. 

Finally, in addition to our main findings that VLG is a visual feature

hat drives cortical scene selectivity, we found that horizontal luminance

radient may drive cortical object processing in LO in both naturalistic,

omplex stimuli in BOLD5000 and artificial, tightly-controlled stimuli

n Study 2. Moreover, in Study 3, we also found tightly-controlled stim-

li of horizontal luminance gradient to be behaviorally categorized as

n “object ” more often than a “place ”. Together, these findings raise

he intriguing possibility that horizontal luminance gradient may be a

isual feature for human visual object recognition. Why might horizon-

al luminance gradient be a diagnostic feature of objects? One plausible

xplanation is that many real-world objects are small and they tend not

o be placed directly under the light source. Coupled with their three-

imensional and multi-faceted nature, light likely reflects unevenly on

bject surfaces, causing the side closer to the light source to be brighter,

nd thus resulting in a common horizontal luminance gradient in ob-

ects. However, this plausible explanation is pure speculation; future re-

earch is therefore needed to investigate whether horizontal luminance

radient is indeed an intrinsic property of visual object stimuli. 

In sum, we asked what characterizes visual inputs as a “scene ”, and

hereby drives human cortical scene processing, and our results indicate

hat VLG is one such feature. Together with findings that concavity is

nother such feature, our findings provide further evidence that visual

cenes can be characterized by a set of diagnostic features common and

nique to visual scenes, and calls for future research to identify the rest

f them. 
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